Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations

نویسندگان

  • Timothy J. Bauler
  • Nobuhiro Kamiya
  • Philip E. Lapinski
  • Eric Langewisch
  • Yuji Mishina
  • John E. Wilkinson
  • Gen-Sheng Feng
  • Philip D. King
چکیده

SHP-2 (encoded by PTPN11) is a ubiquitously expressed protein tyrosine phosphatase required for signal transduction by multiple different cell surface receptors. Humans with germline SHP-2 mutations develop Noonan syndrome or LEOPARD syndrome, which are characterized by cardiovascular, neurological and skeletal abnormalities. To study how SHP-2 regulates tissue homeostasis in normal adults, we used a conditional SHP-2 mouse mutant in which loss of expression of SHP-2 was induced in multiple tissues in response to drug administration. Induced deletion of SHP-2 resulted in impaired hematopoiesis, weight loss and lethality. Most strikingly, induced SHP-2-deficient mice developed severe skeletal abnormalities, including kyphoses and scolioses of the spine. Skeletal malformations were associated with alterations in cartilage and a marked increase in trabecular bone mass. Osteoclasts were essentially absent from the bones of SHP-2-deficient mice, thus accounting for the osteopetrotic phenotype. Studies in vitro revealed that osteoclastogenesis that was stimulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa B ligand (RANKL) was defective in SHP-2-deficient mice. At least in part, this was explained by a requirement for SHP-2 in M-CSF-induced activation of the pro-survival protein kinase AKT in hematopoietic precursor cells. These findings illustrate an essential role for SHP-2 in skeletal growth and remodeling in adults, and reveal some of the cellular and molecular mechanisms involved. The model is predicted to be of further use in understanding how SHP-2 regulates skeletal morphogenesis, which could lead to the development of novel therapies for the treatment of skeletal malformations in human patients with SHP-2 mutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice

In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs) and ...

متن کامل

Novel role for SHP-2 in nutrient-responsive control of S6 kinase 1 signaling.

Amino acids are required for the activation of the mammalian target of rapamycin complex 1 (mTORC1), which plays a critical role in cell growth, proliferation, and metabolism. The branched-chain amino acid leucine is an essential nutrient that stimulates mTORC1 to promote protein synthesis by activating p70 S6 kinase 1 (S6K1). Here we show that the protein tyrosine phosphatase SHP-2 is required...

متن کامل

SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth

The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle-specific deletion of the tyrosine phosphata...

متن کامل

Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development.

Shp-1 and Shp-2 are cytoplasmic phosphotyrosine phosphatases with similar structures. Mice deficient in Shp-2 die at midgestation with defects in mesodermal patterning, and a hypomorphic mutation at the Shp-1 locus results in the moth-eaten viable (me(v)) phenotype. Previously, a critical role of Shp-2 in mediating erythroid/myeloid cell development was demonstrated. By using the RAG-2-deficien...

متن کامل

SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2011